A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows

نویسندگان

  • Emmanuel Audusse
  • François Bouchut
  • Marie-Odile Bristeau
  • Rupert Klein
  • Benoit Perthame
چکیده

We consider the Saint-Venant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when completed with friction. Numerical approximate solutions to this system may be generated using conservative finite volume methods, which are known to properly handle shocks and contact discontinuities. However, in general these schemes are known to be quite inaccurate for near steady states, as the structure of their numerical truncation errors is generally not compatible with exact physical steady state conditions. This difficulty can be overcome by using the so-called well-balanced schemes. We describe a general strategy, based on a local hydrostatic reconstruction, that allows us to derive a well-balanced scheme from any given numerical flux for the homogeneous problem. Whenever the initial solver satisfies some classical stability properties, it yields a simple and fast well-balanced scheme that preserves the nonnegativity of the water height and satisfies a semidiscrete entropy inequality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows

We consider the Saint-Venant system for shallow water flows with non-flat bottom. In the past years, efficient well-balanced methods have been proposed in order to well resolve solutions close to steady states at rest. Here we describe a strategy based on a local subsonic steady-state reconstruction that allows to derive a subsonic-well-balanced scheme, preserving exactly all the subsonic stead...

متن کامل

Tsunami Modelling using the Well-Balanced Scheme

A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation toward...

متن کامل

A multi well-balanced scheme for the shallow water MHD system with topography

The shallow water magnetohydrodynamic system involves different families of physically relevant steady states. In this paper, we design a well-balanced numerical scheme for the shallow water magnetohydrodynamic system with topography, that resolves exactly a large family of steady states. It is obtained by a generalized hydrostatic reconstruction algorithm involving the magnetic field. It is po...

متن کامل

Efficient well-balanced hydrostatic upwind schemes for shallow-water equations

The proposed work concerns the numerical approximations of the shallow-water equations with varying topography. The main objective is to introduce an easy and systematic technique to enforce the well-balance property and to make the scheme able to deal with dry areas. To access such an issue, the derived numerical method is obtained by involving the free surface instead of the water height and ...

متن کامل

Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system

A lot of well-balanced schemes have been proposed for discretizing the classical Saint-Venant system for shallow water flows with non-flat bottom. Among them, the hydrostatic reconstruction scheme is a simple and efficient one. It involves the knowledge of an arbitrary solver for the homogeneous problem (for example Godunov, Roe, kinetic. . . ). If this solver is entropy satisfying, then the hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004